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INTRODUCTION

Since the recognition of the Earth’s approximately spherical shape, one of the central
challenges in cartography has been the construction of accurate maps of the Earth’s surface that
are suitable for navigation. Representing a curved surface on a plane inevitably introduces
distortions, making the development of reliable map projections a longstanding mathematical
and practical problem. Despite its importance, many standard cartography texts devote limited
attention to the underlying mathematical principles involved in map construction. Conversely,
existing treatments of this problem in differential geometry or vector calculus often suffer from
pedagogical limitations. In particular, the historical motivation behind map projections is
frequently overlooked, key concepts are sometimes introduced without sufficient explanation of
their origins or applications, and essential formulas are presented with little discussion of their
derivation.

The present work seeks to address these issues by offering a conceptually clear and
mathematically motivated introduction to the use of differential geometry in cartography. The
exposition is designed to be accessible to first- and second-year university students who possess a
basic understanding of multivariable calculus. Rather than providing an exhaustive treatment of
terrestrial projections, the focus is on illustrating the fundamental geometric difficulties involved
through the study of several classical and representative projections. The term projection refers
to the process of mapping the Earth’s surface onto simpler geometric surfaces such as a plane, a
cylinder, or a cone, all of which have zero Gaussian curvature. Examining these mappings
highlights the intrinsic limitations imposed by curvature and helps explain why certain geometric
properties cannot be preserved simultaneously. The significance of this work lies in its alternative
approach to presenting classical projections, emphasizing intuitive reasoning and analytical
methods drawn from calculus. In doing so, it demonstrates that techniques from multivariable
calculus can serve as an effective and complementary tool to differential geometry in

understanding cartographic projections.
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To establish a consistent framework, we introduce some basic notation. The partial
derivative of a function f = f(u, v) with respect to the variable u is denoted by fu. All functions
considered are assumed to be infinitely differentiable. The standard inner product of vectors u
and v in R3 is written as (u, v), and the corresponding Euclidean norm of a vector u is denoted by
[ u ll. The symbols A and ¢ represent geographical longitude and latitude, respectively, both
measured in radians, with A € [0,2m] and ¢ € [—m/2, t/2]. Finally, the radius of the Earth is
denoted by R.

Maps and the Conformality Property

A map may be viewed as a planar representation of a portion of the Earth’s surface. From
a mathematical perspective, a map can be described as a subset D © R2 such that each point (u,

v) € D corresponds uniquely to a point on the Earth. This correspondence is modeled by a

mapping
r: D — Earth,r = r(u,v), (u,v) € D. (1

It i1s a well-established result that a spherical surface cannot be mapped onto a plane without
introducing distortion in at least one of the fundamental geometric quantities lengths, angles, or
areas. This fact follows directly from Gauss’s Theorema Egregium, which shows that Gaussian
curvature is an intrinsic invariant of a surface. Consequently, the construction of a distortion-free
planar map of the Earth is mathematically impossible. In practical cartography, however, the
preservation of angles is of primary importance, particularly for navigation. If the angle between
two curves on the map is preserved under the mapping r, then it coincides with the corresponding
angle between the curves on the Earth’s surface. This property ensures that directions measured
on the map reflect the true directions on the globe, which is essential for determining accurate

courses.

To determine the conditions under which the mapping r preserves angles that is, when it

1s conformal, we introduce the coefficients of the first fundamental form:
E = <I'u, I'u), F = (ru, rv), G= <rV, rv)-

Since the coordinate lines u = constant and v = constant in the plane are perpendicular, angle
preservation requires that their images under ralso intersect orthogonally. This condition implies
F=0.

Next, consider two straight lines in the map passing through the point Po = (uo, vo), with
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parametric representations

y1(t) = (uo, vo) + t(1,0), y2(t) = (uo, vo) + t(a, b),
where (a,b) # (0,0). These lines intersect at t = 0, and the angle 8 between them in the plane

satisfies
a

VaZ+ b2

If the mapping r preserves angles, then the angle between the curves r(yi(t)) and r(yz(t)) on the

cos 0 =

Earth must also be 0. This angle is determined by the tangent vectors at the point r(Po). A direct

computation shows that

d d
Gt r(yi(t)) le=o= ru(Po),_dt r(yz(t)) lt=0o= aru(Po) + brv(Po).

Since F = 0, the cosine of the angle between these tangent vectors is given by

aE
cos 0 = .

VEVaZE + b2G

Comparing this expression with the planar value of cos0 and simplifying, we obtain the
condition

E=0G
Conversely, if E = G and F = 0, then the mapping r preserves angles at every point. Hence, we
arrive at the following fundamental result: a map is conformal if and only if the coefficients of its

first fundamental form satisfy E = G and F = 0.

Theorem 2.1: Let r: D € R2 — Earth be a differentiable mapping representing a portion of the
Earth’s surface on a plane. Then r preserves angles (i.e., is conformal) if and only if the
coefficients of the first fundamental form satisfy

E=Gand F =0,
where

E= <I'u, ru), F = (ru, rv>, G= <I'V, rv>.
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Remark: This condition ensures that the angle between any two intersecting curves on the map is
equal to the corresponding angle on the Earth’s surface, a property essential for accurate

navigation and conformal mapping.

The Mercator Projection
Consider a simple rectangular map where meridians and parallels are represented by
equally spaced vertical and horizontal lines, respectively. Let A and B be constants such that

increments in map coordinates u and v correspond to increments in longitude and latitude, i.e.,

Au = AAX and Av = BA¢@. If H and V denote the horizontal and vertical extents of the map, then
the mapping

r:[0,H] X [0, V] — Earth, r(u, v) = (longitude A(u) = Au, latitude ¢p(v) = Bv)
associates each map point (u, v) to a point on the Earth. Expressed in Cartesian coordinates on
the sphere of radius R,

r(u,v) = R(cos (Bv)cos (Au), cos (Bv)sin (Au), sin (Bv)).

For this mapping, the coefficients of the first fundamental form are

E = R%AZ%cos 2(Bv),G = R?B%, F = 0,
which clearly shows E # G. According to Theorem 2.1, this mapping does not preserve angles,
and hence is not conformal.

To construct a conformal map, one must adjust the relationship between map
coordinates (u, v) and spherical coordinates (A’ ¢). Let A(u) and ¢ (v)denote the longitude and
latitude corresponding to (u, v). The mapping then becomes

r(u, v) = R(cos (p(v))cos (A(w)), cos (¢ (v))sin (A(w)), sin (P(v))),

with

da_ 2 d¢. ?
E=R2() cos2(¢p(v)),F=0,G=R2(—2) .
du dv

For conformality, E = G and F = 0 must hold, leading to
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Since the left-hand side depends only on u and the right-hand side only on v, both sides must
equal a constant K. Solving these differential equations yields
u=1pv=1 ¢ T
K —Klog tan 62 +—4),

which defines the Mercator projection. Here, K determines the map scale, with 1 cm on the
equator corresponding to KRecm on the Earth's surface. However, distances along parallels shrink
by a factor of cos ¢, resulting in significant distortion near the poles. Therefore, the Mercator

projection is typically used only for regions far from the poles.

An important advantage of the Mercator projection is its treatment of loxodromes (curves of
constant bearing). On the sphere, a loxodrome intersects meridians at a constant angle. Under the
Mercator projection, loxodromes are represented as straight lines on the map, given by

u=vtan 6 + C,

where 0 is the angle with the meridians, and C is a constant determined by a reference point. This
property is particularly valuable in navigation, as it allows sailors to follow a constant compass

bearing along a straight path on the map.

The Mercator Projection and Its Limitations in Political and Geographic Representation

While the Mercator projection is highly effective for navigation, it is unsuitable for
political mapping or general geographic education due to its severe distortion of areas. For
instance, on a Mercator map, India and Scandinavia appear to be roughly the same size, despite
India being more than three times larger. Similarly, South America seems smaller than Europe,
even though its actual area is almost twice that of Europe. Such misrepresentations arise from

the intrinsic properties of the projection.
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Consider a rectangular region on the Mercator map,
D = [ug, uz] X [vi, v2],
which corresponds to the region r(D)on the Earth. Since the mapping satisfies E = Gand F = 0,

the area of the corresponding region on the sphere is given by

Area(r(D)) = J[VEG — F2 dudv = [[E du dv. (6)
D D
Using the expressions for Eand G, we have
do_ 2
E=G=R? (d—) = R2K2cos 2 (V).
\

Hence, if Au = uz — ui, the area of r(D) becomes

Area(r(D)) = Jf R2K2cos 2 ¢p(v) dudv = R2K2 Au [ Z,f)s 2 (v) dv. (7)
D

Vi

Although this integral can be evaluated explicitly (noting that cos ¢ = 1/cosh (Kv)), a
qualitative analysis suffices to explain the distortion. The factor Au indicates that the area
depends on the longitudinal extent but not on the absolute longitude. Therefore, distances in the
east—west direction are not distorted. However, the factor cos 2 ¢p(v) decreases as the latitude
dapproaches +m/2 (near the poles). Consequently, regions at higher latitudes appear
significantly enlarged compared to regions of equal area near the equator.

This explains why regions with identical actual areas can appear drastically different in size on
the Mercator map. Areas closer to the poles are exaggerated, which makes the Mercator
projection unsuitable for accurate visual comparisons in politics or geography, despite its

navigational advantages.
CONCLUSIONS

In this work, several classical map projections have been examined and analyzed, highlighting
their mathematical properties and limitations. While many additional projections are discussed
in the geodesy and cartography literature, our focus has been on demonstrating the underlying
principles through analytic methods. Traditionally, geometrical approaches are employed in
geodetic studies to study map projections, but this work shows that analytic techniques based on
calculus and differential geometry provide a valid and effective alternative. These methods not
only offer precise quantitative insights into distortions but also serve as a complementary
framework for understanding and deriving projections, as further elaborated in the referenced

literature.
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